Scale and curvature effects in principal geodesic analysis

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scale and curvature effects in principal geodesic analysis

There is growing interest in using the close connection between differential geometry and statistics to model smooth manifold-valued data. In particular, much work has been done recently to generalize principal component analysis (PCA), the method of dimension reduction in linear spaces, to Riemannian manifolds. One such generalization is known as principal geodesic analysis (PGA). This paper, ...

متن کامل

Probabilistic Principal Geodesic Analysis

Principal geodesic analysis (PGA) is a generalization of principal component analysis (PCA) for dimensionality reduction of data on a Riemannian manifold. Currently PGA is defined as a geometric fit to the data, rather than as a probabilistic model. Inspired by probabilistic PCA, we present a latent variable model for PGA that provides a probabilistic framework for factor analysis on manifolds....

متن کامل

Face Recognition Using Principal Geodesic Analysis and Manifold Learning

This paper describes how face recognition can be effected using 3D shape information extracted from single 2D image views. We characterise the shape of the field of facial normals using a statistical model based on principal geodesic analysis. The model can be fitted to 2D brightness images of faces to recover a vector of shape parameters. Since it captures variations in a field of surface norm...

متن کامل

Bayesian Principal Geodesic Analysis in Diffeomorphic Image Registration

Computing a concise representation of the anatomical variability found in large sets of images is an important first step in many statistical shape analyses. In this paper, we present a generative Bayesian approach for automatic dimensionality reduction of shape variability represented through diffeomorphic mappings. To achieve this, we develop a latent variable model for principal geodesic ana...

متن کامل

Geodesic Flows in Manifolds of Nonpositive Curvature

I. Introduction-a quick historical survey of geodesic flows on negatively curved spaces. II. Preliminaries on Riemannian manifolds A. Riemannian metric and Riemannian volume element B. Levi Civita connection and covariant differentiation along curves C. Parallel translation of vectors along curves D. Curvature E. Geodesics and geodesic flow F. Riemannian exponential map and Jacobi vector fields...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2017

ISSN: 0047-259X

DOI: 10.1016/j.jmva.2016.09.009